
SCO™ TCP/IP

Derived from

LACHMAN™ SYSTEM V STREAMS TCP

User's Guide

The Santa Cruz Operation™

Portions copyright © 1988, 1989 The Santa Cruz Operation, Inc. All rights reserved.
Portions copyright © 1987, 1988 Lachman Associates, Inc. All rights reserved.
Portions copyright © 1987 Convergent Technologies, Inc. All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor
translated into any human or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal, Santa Cruz,
California, 95061, USA. Copyright infringement is a serious matter under the United States and
foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use
in strict accordance with the End User License Agreement, which License should be read
carefully before commencing use of the software. Information in this document is subject to
change without notice and does not represent a commitment on the part of The Santa Cruz
Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES GOVERNMENT IS
SUBJECf TO RESTRICTIONS AS SET FORTH IS SUBPARAGRAPH (c)(l) OF THE
COMMERCIAL COMPUTER SOFTWARE -- RESTRICTED RIGHTS CLAUSE AT FAR
52.227-19 OR SUBPARAGRAPH (c)(l)(ii) OF THE RIGHTS IN TECHNICAL DATE AND
COMPUTER SOFTWARE CLAUSE AT DFARS 52.227-7013.
"CONTRACTOR/MANUFACTURER" IS THE SANTA CRUZ OPERATION, INC., 400
ENCINAL STREET, P.O. BOX 1900, SANTA CRUZ, CALIFORNIA 95061, U.S.A.

sea TCP/IP was developed by Lachman Associates.
SCO TCP/IP is derived from LACHMAN™ SYSTEM V STREAMS TCP, a joint development
of Lachman Associates and Convergent Technologies.

This document was typeset with an IMAGEN® 8/300 Laser Printer.

SCO, The Santa Cruz Operation, and the SeQ logo are trademarks of The Santa Cruz Operation, Inc.

UNIX is a registered trademark of AT&T.

LACHMAN is a trademark of Lachman Associates, Inc.

Ethernet is a registered trademark of Xerox.

SCO Document Number: 11-25-89-1.1.0D
Printed: 12/4/89

Contents

1 Introduction

What is TCP/IP? 1-1
How are Messages Routed? 1-3
ICMPErrorandControlMessages 1-5
Protocol Layering 1-6
Further Reading 1-7

2 Using Network Commands

Introduction 2-1
Overview of TCP/IP Networking Commands 2-2
UNIX Networking Commands 2-4
Concepts Important to Using Network Commands . 2-6
Virtual Terminals and Remote Login 2-9
Transferring Files 2-10
Executing Remote Commands 2-11

3 Executing Remote Commands

Using rcmd 3-1
Shellscript Programming 3-3

4 Using Remote Terminals

Introduction 4-1
Communicating Using telnet 4-2
The rlogin Command 4-11

5 Transferring Files

Introduction 5-1
Workingwithftp 5-2
The rcp Command 5-21

6 The Time Synchronization Protocol

Introduction 6-1
Message Format 6-3
The TSP Messages 6-4

-i-

Chapter 1

Introduction

What is TCPIIP? 1-1
The Internet Protocol (IP) 1-1
The Transmission Control Protocol (TCP) 1-2

How are Messages Routed? 1-3
Gateways 1-3
Network Addresses 1-3
Ports and Sockets 1-4

ICMP Error and Control Messages 1-5

Protocol Layering 1-6

Further Reading 1-7
General Computer Network Concepts 1-7
TCP/lP Information 1-8
LAN and Ethernet Information 1-9

What is TCP/IP?

What is TCP/IP?
TCP/lP is a set of protocols used to interconnect computer networks and
to route traffic among many different computers. "TCP" means Transmis
sion Control Protocol, and "IP" means Internet Protocol. Protocols are
standards which describe allowable fprmats, error handling, message
passing, and communication standards. Computer systems which con
form to communications protocols such as TCP/lP are thus able to speak a
common language. This enables them to transmit messages accurately to
the correct destination, despite major differences in the hardware and
software of the various machines.

Many large networks have been implemented with these protocols,
including the DARPA Internet (Defense Advanced Research Projects
Agency Internet). A variety of universities. government agencies, and
computer firms are connected to an internetwork which follows the
TCP/lP protocols. Thousands of individual machines are connected to
this internet. Any machine on the internet can communicate with any
other. (The term internetworking is used to refer to the action of joining
two or more networks together. The result can be described as a network
of networks, which is called an "internet.") Machines on the internet are
referred to as "hosts" or "nodes."

TCP/lP provides the basis for many useful services, including electronic
mail, file transfer, and remote login. Electronic mail is designed to
transfer short text files. The file transfer application programs can
transfer very large files containing programs or data. They also can pro
vide security checks controlling file transfer. Remote login allows users
on one computer to log in at a remote machine and carry on an interactive
session.

The Internet Protocol (IP)

The Internet Protocol, IP, defines a connectionless packet delivery. This
packet delivery connects one or more packet-handling networks into an
internet. The term "connectionless" means that the sending and receiv
ing machines are not connected by a direct circuit. Instead, individual
packets of data (datagrams) are routed through different machines on the
internet to the destination network and receiving machine. Thus, a mes
sage is broken up into several datagrams which are sent separately. Note
that connectionless packet delivery by itself is not reliable. Individual
datagrams mayor may not arrive, and they probably won't arrive in the
order in which they were sent. TCP add reliability.

Introduction 1-1

What is TCP!IP?

A datagram consists of header infonnation and a data area. The header
information is used to route and process the datagram. Datagrams may be
fragmented into smaller pieces, depending on the physical requirements
of the networks they cross. (When a gateway sends a datagram to a net
work which cannot accommodate the datagram as a single packet, the
datagram must be fragmented into pieces that are small enough for
transmission.) The datagram fragment headers contain the information
necessary to reassemble the fragments into the complete datagram. Frag
ments do not necessarily arrive in order; .the software module implement
ing the IP protocol on the destination machine must reassemble the frag
ments into the original datagram. If any fragments are lost, the entire
datagram is discarded.

The Transmission Control Protocol (TCP)

The Transmission Control Protocol, TCP, works with IP to provide reli
able delivery. It provides a means to ensure that the various datagrams
making up a message are reassembled in the correct order at their final
destination and that any missing datagrams are sent again until they are
correctly received.

The primary purpose of TCP is to provide a reliable, secure, virtual
circuit connection service between pairs of communicating processes on
top of unreliable subnetworking of packets, where loss, damage, duplica
tion, delay or misordering of packets can occur. Also, security provisions
such as limiting user access to certain machines can be implemented
through TCP.

TCP is concerned only with total end-to-end reliability. It makes few
assumptions about the possibility of obtaining reliable datagram service.
If a datagram is sent across an internet to a remote host, the intervening
networks do not guarantee delivery. Likewise, the sender of the datagram
has no way of knowing the routing path used to send the datagram.
Source-to-destination reliability is provided by TCP in the face of unreli
able media; this makes TCP well-suited to a wide variety of multi-ma
chine communication applications.

Reliability is achieved through checksums (error detection codes),
sequence numbers in the TCP header, positive acknowledgment of data
received, and retransmission of unacknowledged data.

1-2 TCP/IP User's Guide

How are Messages Routed?

How are Messages Routed?
The following sections explain gateways and network addresses. These
two concepts are the key to understanding how datagrams are routed
through an internet.

Gateways

The various networks which compose an internet are connected through
gateway machines. A gateway is a machine that is connected to two or
more networks. It can route datagrams from one network to another.
Gateways route the datagrams based on the destination network, rather
than the individual machine (host) on that network. This simplifies the
routing algorithms. The gateway decides which network should be the
next destination of a given datagram. If the destination host for the
datagram is on that network, the datagram can be sent directly to·. that
host Otherwise, it continues to pass from gateway to gateway until it
reaches the destination network.

Network Addresses

Each host machine on a TCP/IP internet has a 32-bit network address. The
address includes two separate parts: the network id and the host machine
id. Machines which serve as gateways will thus have more than one
address, since they are on more than one network. Internet addresses are
assigned by the Network Information Center (NIC) located at SRI Inter
national in Menlo Park, California. The NIC assigns only network id's;
the individual network administrators then assign the host machine id's
for their network.

There are three classes of network addresses, corresponding to small,
medium, and large networks. The larger the network, the larger the num
ber of hosts on that network; likewise, smaller networks have fewer hosts.
Thus, when the 32-bit network address is divided between the network id
and the host machine id, larger networks will need a larger number of bits
to uniquely specify all the hosts on the network. Also, there are only a
small number of really large networks, and so fewer bits are needed to
uniquely identify these networks. The network addresses have thus been
divided into three classes, identified as A, B, or C. The following table
lists these classes and their formats.

Introduction 1-3

How are Messages Routed?

Class Network Size Configuration

Class A Allocates a 7 -bit network id and a 24-bit host id.

Class B Allocates a 14-bit network id and a 16-bit host id.

Class C Allocates a 21-bit network id and an 8-bit host id.

All network addresses are 32 bits. The first bit of a Class A address is 0
(zero), to identify the address as Class 'A. Class B addresses begin with
the digits 10, and Class C addresses begin with 11.

This system of network address classes provides a unique address for the
entire statistical distribution of types of networks that might be expected
among the various networks using this address system. There are a
smaller number of large networks, having many hosts (Class A), a larger
number of small networks, consisting of a lesser number of hosts (Class
C), and a medium number of networks made up of a medium number of
hosts (Class B).

Network addresses are often written as four decimal integers separated by
periods (.), where each decimal number represents one octet of the 32-bit
network address. For example, a machine might have the address
128.12.3.5.

Ports and Sockets

TCP also uses a 16-bit number called the "port" to address a connection.
The port specifies the particular destination program or utility, such as ftp
(file transfer program).

A socket is an address that specifically includes a port identifier, that is,
the concatenation of an internet address with a TCP port. Port connec
tions are displayed in the Active Connections Display of netstat (TC).

For more information on sockets and how TCP uses them, see the SCO
TCPIlP Socket Programmer's Guide.

1-4 TCP/IP User's Guide

ICMP Error and Control Messages

ICMP Error and Control Messages
ICMP is the Internet Control Message Protocol. It defines the error and
control messages for IP. ICMP messages are sent in datagrams, like other
network messages. These messages can be error messages, such as
unreachable destinations, or requests for information, such as a particular
network address. ICMP messages are also used to request timestamps,
which are useful when synchronizing the clocks of various hosts on a net
work.

Introduction 1-5

Protocol Layering

Protocol Layering
Communications software protocols are divided into different layers,
where the lowest layer is the hardware which physically transports the
data, and the highest layer is the applications program on the host ma
chine. Each layer is very complex in its. own right, and no single protocol
could encompass all the tasks of the various layers. As discussed earlier,
the Internet Protocol handles the routing of datagrams, while the
Transmission Control Protocol, which is the layer above IP, provides reli
able transmission of messages which have been divided into datagrams.
The applications programs in tum rely on TCP to send information to the
destination host.

To the applications programs, TCP/IP appears to provide a full-duplex
virtual circuit between the machines. In actuality, all information is
divided into datagrams, which may then be further fragmented during
transmission. The software modules implementing IP then reassemble
the individual datagrams, while the modules implementing TCP make
sure that the various datagrams are reassembled in the order in which they
were originally sent.

There are several higher-level specialized protocols for specific applica
tions such as terminal traffic (telnet(TC)) and file transfer (ftp(TC)), and
protocols for other network functions such as gateway-status monitoring.
In this manual, however, these are not usually referred to as protocols, but
rather as programs or services.

1-6 TCP/IP User's Guide

Further Reading

Further Reading
The following is a list of useful references where additional infonnation
about TCP/IP can be found. Some references are for highly technical
users, while others are less technical. References fall into three
categories:

• General computer network concepts

• TCP/IP information

• Local Area Network (LAN) and Ethernet information

General Computer Network Concepts

Technical Explanations and Texts:

Tannenbaum, Andrew S., Computer Networks, (Prentice-Hall, Englewood
Cliffs, N.J., 1981). ISBN 0-13-165183-8.

Stallings, William, Data and Computer Communications, (Macmillan
Publishing Company, New York, 1988), 2nd Ed. ISBN 0-02-415451-2.

Standards and specifications:

The following documents are available from the American National Stan
dards Association, Inc., 1430 Broadway, New York, NY 10018:

International Standard 7498 (IS 7498), "Infonnation processing systems
-- Open Systems Interconnection -- Basic Reference Model," (Interna
tional Organization for Standardization (ISO), Geneva, 1984).

This document defines the "Reference Model for Open Systems Intercon
nection," commonly known as the "OSI Reference Model."

Recommendation X.200, "Reference Model of Open Systems Intercon
nection for CCITT Applications, " (International Telegraph and Telephone
Consultative Committee (CCITT), Geneva, 1985). ISBN 92-61-02341-X.

This is basically the same document as the ISO version, but as adopted by
the CCITT. The CCIlT version is published in a bound volume known as

Introduction 1-7

Further Reading

Volume VIII -- Fascicle VIII.5 of the Red Book. The Red Book is a col
lection of recommendations on all aspects of telegraph and telephone
communications by both humans and computers. Every four years the
CCITI approves an updated set of Recommendations, which it is known
by the color of the binding. The 1985 Red Book was published in 10
"Volumes," many of which were broken down into several separate "Fas
cicles," for a total of 42 separately bound books.

TCP/IP Information

Technical Explanations and Texts

Comer, Douglas, Internetworking with TCPIIP: Principles, Protocols,
and Architecture, (Prentice-Hall, Englewood Cliffs, N.J, 1988). ISBN 0-
13-470154-2.

Gives good explanations of the protocols, how they should be imple
mented, and references for further information such as "Requests For
Comments" (RFCs).

Stallings, William S., et. al., Handbook of Computer Communications
Standards, Volume 3: Department of Defense (DOD) Protocol Standards,
(Macmillan Publishing Company, New York, 1988). ISBN
0-02-948072-8.

Davidson, John, An Introduction to TCPIIP, (Springer-Verlag Inc., New
York, 1988). ISBN 0-387-96651-X.

Standards and Specifications

Feinler, Elizabeth J., et. al. (Eds.), DDN Protocol Handbook, (SRI Inter
national, Menlo Park, Calif., 1985). 3 volumes. Available at a cost of
about US$110.00 from:

1-8

DDN Network Information Center
SRI International
333 Ravenswood Avenue, Room EJ291
Menlo Park, CA 94025 USA
Telephone 1-800-235-3155

or:

Defense Technical Information Center (DTIC)
Cameron Station
Alexandria, VA 22314 USA

TCP/IP User's Guide

Further Reading

The DDN Protocol Handbook is a compilation of various documents
including relevant Internet RFCs and "Internet Engineering Notes"
(lENs). The RFCs and lENs are identified by a number, such as RFC 791
or lEN 48. The RFCs and lENs are normally made available to network
researchers and other interested parties in electronic form on the ARPA
Internet, but can also be obtained in printed form from the DDN Network
Information Center listed above. Many important RFCs have been issued
since 1985 when the DDN Protocol Handbook was published, so the
above volumes should be considered a starting point. Some of the newer
RFCs supercede information contained ill those printed in this set of vol
umes. Generally, RFCs numbered higher than RFC 961 will not be found
in these volumes.

LAN and Ethernet Information

Technical Explanations and Texts

Stallings, William S., Handbook of Computer Communications Stan
dards, Volume 2: Local Network Standards, (Macmillan Publishing Com
pany, New York, 1987). ISBN 0-02-948070-1.

Chorafas, Dimitris N., Designing and Implementing Local Area Networks,
(McGraw-Hill, Inc., New York, 1984). ISBN 0-07-010819-6.

Hammond, Joseph L., and O'Reilly, Peter J.P.~erformance Analysis
of Local Computer Networks, (Addison-Wesley, Reading, Mass., 1986).

ISBN 0-201-11530-1.

Although this selection is very mathematical and focuses on performance
analysis, it is a good source of information about how local area networks
actually function.

Standards and Specifications

ANSI/lEEE Std 802.2-1985 (ISO Draft International Standard 8802/2), An
American National Standard: IEEE Standards for Local Area Networks:
Logical Link Control (The Institute of Electrical and Electronic
Engineers, Inc., 1984). ISBN 471-82748-7.

ANSI/IEEE Std 802.3-1985 (ISO Draft International Standard 8802/3), An
American National Standard: IEEE Standards for Local Area Networks:
Carrier Sense Multiple Access with Collision Detection (CSMAICD)
Access Method and Physical Layer Specifications (The Institute of
Electrical and Electronic Engineers, Inc., 1985). ISBN471-82749-5.

Introduction 1-9

Chapter 2

Using Network Commands

Introduction 2-1

Overview of TCP/IP Networking Commands 2-2

UNIX Networking Commands 2-4

Concepts Important to Using Network Commands 2-6
User Equivalence 2-6
Connections, Names and Addresses 2-7
Access Privileges 2-7

Virtual Terminals and Remote Login 2-9
The telnet Command 2-9
Remote Login with rlogin 2-9

Transferring Files 2-10

Executing Remote Commands 2-11

Introduction

Introduction
This chapter is an overview of UNIX intemetworking commands. You
should read this chapter if you are a network user, a new system adminis
trator, or a programmer. This chapter introduces key concepts necessary
to properly use the intemetworking comJ;Ilands. It also includes introduc
tions to several of the commands. Subjects discussed in this chapter
include:

• the available network commands

• user equivalence

• identifying machine addresses within commands

• access and password problems

• remote login

• using a virtual terminal

• transferring files to and from remote machines

• remote command execution

Using Network Commands 2-1

Overview of TCP/IP Networking Commands

Overview of TCP/IP Networking
Commands
The TCP/IP commands are derived from both the Berkeley UNIX
environment and the ARPANET networking environment. (ARPA is an
acronym for [Defense] Advanced Research Projects Agency.) The com
mands derived from Berkeley UNIX can only be used with UNIX or
UNIX-compatible systems. Those derived from ARPANET are designed
to work with any operating system.

The major difference between these two different types of commands is
that the 4.3BSD (Berkeley UNIX) commands propagate UNIX-style per
missions across the network. The ARPANET commands do not under
stand the UNIX-style permissions.

Included in the TCP/IP commands is a set of commands often referred to
in a Berkeley UNIX environment as the r-commands. The r stands for
remote. This set includes such commands as rep, rcmd, and rlogin.
These commands are similar to their Berkeley UNIX counterparts. These
4.3BSD type commands are designed to be UNIX-specific and are most
suitably used when you are working on a UNIX type host.

Commands such as tel net and ftp originated from ARPANET. They are
designed to be operating-system independent. The protocols used in
these commands are in accord with the Department of Defense (DoD)
Internet specification.

The networking commands are listed alphabetically in the table below
with brief descriptions. Not all of these commands are intended for use
by network users. Some provide network administrative functions.

Command

TCP!IP Networking Commands

Description

ftp(TC)
ifconfig(ADMN)
10gger(TC)
mkhosts(ADMN)
netstat(TC)
rcmd(TC)

2-2

file transfer program
configure network interface parameters
make entries in the system log
make node name commands
show network status
remote shell command execution

TCP/IP User's Guide

rcp(TC)
rlogin(TC)
ruptime(TC)
rwho(TC)
slattach(ADMN)
sldetach(ADMN)
talk(TC)
telnet(TC)
trpt(ADMN)

Overview of TCP/IP Networking Commands

remote file copy
remote login
display status of nodes on local network
who is logged in on the local network nodename
attach serial lines as network interfaces
detach serial lines as network interfaces
talk to another user
user interface to DARPA TELNET protocol
print protocol tr~ce

Using Network Commands 2-3

UNIX Networking Commands

UNIX Networking Commands
A UNIX network is a group of UNIX or UNIX compatible machines linked
together, usually through Ethernet. A UNIX internetwork is two or more
such networks joined together by gateways to form a larger network. The
internetworking gateways are invisible at the command interface level,
giving the appearance of a single network. (Gateways are also referred to
as IP routers or bridges.)

UNIX is a command-oriented operating system, and so to make use of the
remote resources in a UNIX internetworking environment, certain
network-specific commands are available. These commands are fully
integrated with UNIX and can be invoked from the shell command line
and shell scripts. Alternatively, they can be executed from within user
programs by using the fork(S) or exec(S) system calls, or the system(S)
library routine.

These commands are user processes of the operating system but they
require network software to function. In UNIX, the name of the command
is the same as the name of the file that contains the process program.

Some of the many things you can do as a user whose machine is con
nected in a UNIX network are:

• Remotely log onto another machine on which you have an account.

• Move logically from one remote machine to another without hav
ing to enter your password (if your system administrator has
"equated" the machines or if you have created a user equivalence
for that machine)

• Execute commands on any machine in the network. This means,
for example, that you can execute commands from wherever the
data is located. The advantage of this is that you do not need to
move files. Alternatively, you can choose to execute commands
where the load is lowest, or you can construct sequences of UNIX
commands including pipes that move data between machines for
processing.

• Access public data from all machines.

• Copy or transfer files from one machine to another if you have per
mission to do so (see chmod(C».

2-4 TCP/lP User's Guide

UNIX Networking Commands

• Share remote devices such as printers and tape drives.

• Access electronic mail systems that have been implemented for
the network.

• Run applications resident on other machines.

• Access other UNIX machines that are running the appropriate com
munications protocol.

Note that there are three types of UNIX networking objects:

• executable commands and server programs (sometimes called dae
mons) supporting the commands

• configuration files

• library and system calls for use by programmers

Using Network Commands 2-5

Concepts Important to Using Network Commands

Concepts Important to Using
Network Commands
This section discusses several concepts which you must understand in
order to use network commands properly .. These include:

• user equivalence

• connections and addresses

• machine access and passwords

User Equivalence

User equivalence applies only to the commands rcp, rcmd, and rlogin.
The command rcp cannot be used without user equivalence. The com
mand rlogin prompts for a. user name and password when user
equivalence is not established; when there is user equivalence, this step is
omitted. The command rcmd cannot be used normally without user
equivalence. (If rcmd is invoked with a host name and no command
when there is no user equivalence, the effect is the same as invoking rlog
in without user equiValence. That is, the program will prompt for a user
name and password for login.)

There are several files which are used to establish user equivalence. One
is the letclhosts.equiv file, which covers the system as a whole, except for
the root account. The other is the .rhosts file in the individual account's
home directory. This file covers only the individual account. (For root,
this is I.rhosts.) These two files work together with a third file,
letclpasswd, to determine the extent of user equivalence.

There are two ways to establish user equivalence:

• An entry in .rhosts and in letclpasswd, or

• An entry in letclhosts.equiv and in letclpasswd.

In both cases, letclpasswd must contain an entry for the user name from
the remote machine. Do not edit this file to insert entries for equivalence.
Rather, use the sysadmsb(ADM) utility to create user accounts and
entries in the letclpasswd file for user equivalence. XENIX users may
note that they can edit the letclpasswd file to add equivalence entries.
This is prohibited under UNIX.

2-6 TCP/IP User's Guide

Concepts Important to Using Network Commands

The two methods of making equivalence listed above have differing
scopes. If the file .rhosts is used in a particular account, then user
equivalence is established for that account only. However, if there is an
entry in letclhosts.equiv for a host name and an account on that host, then
that account has user equivalence for any account (except root). If the
entry in letclhosts.equiv has only the remote host name, then any user on
that host has user equivalence for all local accounts (except root).

Entries for .rhosts must include both t~e system name and the account
name. The file letclhosts.equiv does allow entries for the system name
only, as discussed earlier.

If there are entries in both .rhosts and letclhosts.equiv for the same ma
chine or machine/account combination, then the entry from
letclhosts.equiv determines the extent of user equivalence.

Connections, Names and Addresses

In order to communicate between your machine and a remote machine
over the internet, you must first establish a cOl1_nection to the remote ma-
chine. .

TCP/IP performs the mechanics of establishing connections for you, but
for several programs, telnet and ftp in particular, you must be aware of
connections and give the commands to establish them.

As in dialing a telephone, you must first know how to reach the recipient
of your call when setting up a connection. Each host on the internet has a
unique address at which it can be called to establish a connection.
Because network addresses are not always easy to remember, the internet
software allows for the use of names instead of addresses. Host names
are established by your system administrator. If you do not know the
names of the hosts that you need to use, ask your system administrator.
Since hosts may be used for several purposes, it is possible to have
several names (aliases) for the same host address. However, each name
always stands for a single host address and will connect you to the same
host each time you use it.

Access Privileges

Often in an internetworking environment, different host machines are
under the jurisdiction of different departments and personnel. Those in
charge of a host machine often want to limit access to their host for vari-
0us security and procedural reasons. Privileges to access a machine can
be granted only from the machine in question. If you are unable to access

Using Network Commands 2-7

Concepts Important to Using Network Commands

a machine that you need to use, you or your supervisor should consult the
network administrator of the host machine in question.

If you need access beyond anonymous rtp (see "Transferring Files" later
in this chapter), the administrator can set up a machine or user
equivalence between your native host and the remote host. You will need
an account and password for the remote machine. If you have an account
on a remote machine, you can set up a user equivalence yourself. (See
"What Is User Equivalence?" earlier in ~is chapter.)

2-8 TCP/IP User's Guide

Virtual Terminals and Remote Login

Virtual Terminals and Remote Login
The command rlogin(TC) and the ARPANET command telnet(TC) pro
vide a choice of virtual tenninal capability. A virtual tenninal is created
when you use your local machine to log onto a remote machine. The
impression given is that your tenninal is logically attached to the remote
machine. Switching your tenninal between UNIX-compatible machines
can be as easy as typing the name of the machine to which you intend to
connect.

Virtual tenninal capability differs from remote command execution in
that the user can use programs that depend on accessing the terminal
directly, such as vi(C). These commands use the terminal in raw mode.
That is, they read from the terminal character-by-character, instead of
line-by-line.

The following is a brief overview of telnet and rlogin. For more infonn
ation on these commands, see Chapter 4, "Using Remote Terminals."

The telnet Command

The tel net command provides virtual terminal access to other machines
on the internet. Using tel net, you can log into any host on the network for
which you have an account, just as if you were a local user of that ma
chine. Once telnet is invoked and your connection is established, your
terminal is linked to a remote machine, and data that you type is passed to
that machine. Responses from the remote machine will be displayed on
the screen of your terminal.

For more information on telnet, see Chapter 4, "Using Remote Tenni
nals."

Remote Login with rlogin

You can use rlogin to remotely log into another UNIX-compatible ma
chine. To use this command, you need a password on the host where you
intend to log on. However, if you already have user equivalence on the
remote machine, you do not need a password. The rlogin command can
only be used to connect to UNIX -compatible hosts.

For more information on rlogin, see Chapter 4, "Using Remote Tenni
nals."

Using Network Commands 2-9

Transferring Files

Transferring Files
The ftp command enables you to manipulate files on two machines simul
taneously. Using ftp, you can examine directories and move single or
multiple files between systems. This program is designed to be mostly
independent of the type of operating sys~em.

An additional feature of ftp is that it allows an anonymous user who does
not have an account on your machine to pick up or deposit certain files
without a password from a protected area of the ftp home directory. The
ftp command does not require (or understand) user equivalence.

The remote file copy command rep does require user equivalence. The
command rep is a UNIX-specific command, and it can only be used when
you are transferring files between UNIX compatible hosts.

For more information of ftp and rep, see Chapter 5, "Transferring Files."

2-10 TCP/IP User's Guide

Executing Remote Commands

Executing Remote Commands
The rcmd command enables you to send commands to remote UNIX ma
chines for execution and have the results returned to you. You do not
have to log onto the remote machine to use rcmd; it acts like a pipe to the
other machine. This command is useful, for constructing distributed shell
programs which execute commands on remote machines over the net
work. To use rcmd, you must have equivalence on the target machine
(the machine on which you are trying to execute the command).

This command can only be used with remote machines that are running
UNIX or a compatible operating system. The rcmd command passes its
standard input and output to the remotely executed command, and returns
to the issuing system all output that the remote command generates on
standard output and standard error.

You must have lusrlhosts in your search path to access machines directly.
(For more information on rcmd, see Chapter 3, "Executing Remote Com
mands.")

Using Network Commands 2-11

Chapter 3

Executing Remote Commands

Using rcmd 3-1
Invoking rcmd 3-1
Options of rcmd 3-1
A Sample Session Using rcmd 3-2
Remote Printing 3-2

Shellscript Programming 3-3

Using rcmd

Using rcmd
The rcmd command enables you to send commands to remote UNIX ma
chines for execution with the results returned to you. You do not have to
log onto the remote machine to use rcmd. (The command acts like a pipe
to another machine.) The rcmd commapd is useful for constructing dis
tributed shell programs. You must have equivalence on the target machine
to use rcmd. (User equivalence is discussed in Chapter 2.) The target
machine is the machine on which you are trying to execute the command.

This command can be used only with remote machines running UNIX or a
compatible operating system. The rcmd command passes the standard
input (for the command to be executed) to the remote machine, and then
it outputs the command's standard output and standard error to the local
machine.

You must have lusrlhosts in your search path to access machines directly.

Invoking rcmd .

The rcmd command is given from the UNIX shell. You must specify the
name of a remote machine and one or more commands to be executed, for
example:

rcrnd machine-name com~nd

In most cases, you can omit specifying rcmd to the shell and simply use
the name of the remote machine and a command. For example:

machine-name com~nd

In order for you to be able to use this feature, your system administrator
must have configured UNIX to accept the name of the remote machine
without specifying rcmd. Your system administrator can advise you on
how your machine is configured.

Options of rcmd

There are two options you can specify when you invoke rcmd. These
options are:

Executing Remote Commands 3-1

Using rcmd

-1 user Nonnally, the command you specify is executed under
your user name on the remote machine. This option
allows you to specify that the command be executed
under another user name, for example:

rcmd machine-name -1 tom command

Whether you use your user name or another user name,
you must have establish~d permission for yourself on the
remote machine that will execute the command. The
system administrator of the remote machine can advise
you on how the remote machine is configured.

-n This option prevents rcmd from sending standard input
to the remote command you specify and prevents rcmd
from "reading up" standard input. This is done by mak
ing the command's standard input Idev/null instead of
rcmd's standard input. For example:

rcmd machine-name -n -1 tom command

"Reading up" means reading and buffering the data.
The rcmd command buffers standard input data regard
less of whether the remote command reads it.

A Sample Session Using rcmd

The following example shows rcmd being used to run the who(C) com
mand on a remote machine called admin. The output is placed in a file on
the local machine by redirecting standard output. In this example, stan
dard output is redirected to the file /tmp/admin.who.

rcmd admin who> /tmp/admin.who

Remote Printing

The rcmd command can be used for remote printing, as in the following
example, which prints a file called tempI on the default printer of a sys
tem called systemx:

$ cat tempI I rcmd systemx Ip

3-2 TCP/IP User's Guide

Shellscript Programming

Shellscript Programming
Many useful shell programs can be written by using the ability of the
TCP/lP networking commands to use pipes across the network. (See
sh(C) and pipe(S) for more information on piping.) Some examples of
systems based on shell programs are:

• remote line printer spooling using rcmd and lp.

• distributed text processing using troff (CT). In this system,
macroprocessing is done at the user's node, the font processing is
done on a lightly loaded back-end machine, and printing is done on
a machine with a laser printer.

• using a remote tape drive to read/write a cpio archive.

• killing a process on a remote machine.

• backing up or restoring remote file systems.

Executing Remote Commands 3-3

Chapter 4

Using Remote Terminals

Introduction 4-1

Communicating Using telnet 4-2
Command and Input Modes 4-2
Invoking the telnet Program 4-2
Using telnet Commands 4-4
Some Sample Sessions 4-8

The rlogin Command 4-11
Invoking the rlogin Program 4-11
Leaving the rlogin Program 4-11
Options for rlogin 4-12
Using a Tilde in the Text 4-12

Introduction

Introduction
This chapter explains how to use two TCP/lP commands that provide vir
tual terminal capability. "Virtual" means that no physical connection is
made to the remote machine. Rather, the command simulates a physical
line between your terminal and a remote machine. "Terminal" means
that the command allows your terminal 'on your local machine to act as a
terminal on a remote machine over the internet.

The virtual terminal commands described in this chapter are:

• telnet(TC)

• rlogin(TC)

The telnet command provides virtual terminal access to other machines
on the internet. Using telnet, you can log into any host on the network for
which you have pennission, just as if you were a local user of that ma
chine. Once telnet is invoked, your terminal is linked to a remote ma
chine, and data that you type is passed to that machine. Responses from
the remote machine are displayed on the screen of your terminal.

The rlogin command can be used in place of telnet to communicate with
other machines running the UNIX operating system. The rlogin command
provides a virtual terminal access that is specific to the UNIX operating
system. For more information, see the section titled "The rlogin Com
mand" later in this chapter.

Using Remote Terminals 4-1

Communicating Using teinet

Communicating Using tel net
The teinet program is an interactive program that enables you to com
municate with a remote machine in a terminal session. Once you invoke
telnet, you interact with teinet until you exit and return to the shell (the
calling program).

Command and Input Modes

Whenever you open a telnet connection to a remote machine, telnet
operates in input mode. Input mode transfers all the characters you type
to the remote machine and displays on your terminal screen all data sent
to you by the remote machine. The one exception to this is a special
character called the escape character ("]). If you type this, it places
telnet in command mode. (This escape character is not the same as the
<ESC> command of your keyboard. The escape character for tel net is
produced by typing <CTL>]).

In command mode, data that you type is interpreted by telnet to allow
you to control telnet operation. Command mode is active when telnet is
not connected to a remote host.

When telnet is in input mode, it communicates with the remote host
based on a number of options. These options specify how operating sys
tem and terminal-specific properties of terminal-to-computer communi
cations will be performed. An example of such an option is whether the
echoing of the characters you type is done by telnet locally or by the
remote machine. The telnet program and the remote machine you specify
will negotiate these options and establish a compatible set of options for
your terminal when you connect to a host.

Invoking the telnet Program

The tel net program is invoked from the UNIX shell with the command
telnet.

4-2 TCP/IP User's Guide

Communicating Using telnet

Optionally, you can specify the name of the remote machine with which
you intend to communicate. The following example shows a connection
being made to a remote machine called admin:

telnet admin

Machine names are defined by your system administrator. You can exam
ine the machine names available to you by listing the contents of the file
fetc/hosts.

When you specify a machine name to invoke telnet, it establishes a net
work connection to that machine and enters input mode. You can also
invoke telnet without a machine name, for example:

telnet

In this case, you will be in command mode, since no machine was
specified. If you do not specify a machine name, you must open a con
nection from within telnet by using telnet's open command to access a
remote host. More details are given in the next section, "Using telnet
Commands."

Using Remote Terminals 4-3

Communicating Using telnet

Using telnet Commands

You can enter telnet commands whenever the tel net command mode
prompt is displayed. The telnet command prompt looks like this:

telnec:.>

If you are not connected to a remote machine, the telnet program is in
command mode. The same applies when you enter the escape character
(A]) from input mode.

If command mode was not entered from input mode, telnet generally
remains in command mode and displays the command mode prompt again
after you enter each command. If you use the open command to establish
a telnet connection to a remote machine, telnet enters input mode.

If command mode was entered from input mode, teinet generally returns
to input mode after processing your command. If you use the close com
mand to close the remote host connection, telnet remains in command
mode after the command is processed. If you use the quit command,
telnet exits and returns you to the calling program (usually the shell).

Each command you give to telnet in command mode must be followed by
<Return>. The telnet program will not start a command until it receives
<Return> from you. If you make a mistake while typing a command, you
can use the shell line-editing commands erase «BKSP» and kill «Can
cel» to edit the characters that you have typed. However, these shell
line-editing commands do not work when you are in input mode. Instead,
you must use special telnet send commands. These are discussed later in
this section.

When entering a command, you do not have to enter the full command
name. You need only enter enough characters to distinguish the command
from other telnet commands. The definitive syntax for all telnet com
mands is given on the manual page telnet(TC) in the TCPIlP User's
Reference Manual. These are the telnet commands:

4-4

open This command establishes a tel net connection to a
remote machine. You should specify the name of the
remote machine as an option of the command. This
example opens a telnet connection to the machine
admin:

telnet> open admin

TCP/IP User's Guide

close

quit

z

mode

display

send

Communicating Using tel net

This command closes the connection to the remote host
and stops tel net operation. It is functionally equivalent
to the quit command.

This command tenninates your telnet session and exits
telnet. The quit command closes the connection to the
remote machine if one is active.

This command suspends telnet on systems with job con
trol. On other systems, the command provides the user
with another shell.

The following are subcommands and options of the
mode command, whose syntax is described in the man
page telnet(TC):

mode

line

line I character]

The remote host is asked for pennis
sion to go into line-at-a-time mode.

character The remote host is asked for pennis
sion to go into character-at-a-time
mode.

This command displays all or some of the set or toggle
values. (See the set and toggle commands later in this
section.)

This command sends one or more special character
sequences to the remote host. The subcommands and
options of the send command are fully described in the
man page telnet(TC):

send ao I ayt I brk I ...]

ao This command causes telnet to tell the
remote machine to abort sending any
output that is in progress. This com
mand is useful if the remote host is
sending you data that you do not wish
to see and you would like telnet to
return to command mode on the remote
machine. The only output aborted is
that currently being sent; you can con
tinue to communicate with the remote
machine once the current output has
been stopped.

Using Remote Tenninals 4-5

Communicating Using tel net

4-6

ayt This command causes telnet to send an
"are you there?" message to the
remote machine. The remote machine
will send you back a message if it is
active. This message is often simply a
command which causes the bell on
your terminal to sound, although it may
be a string of text that is displayed on
your terminal. This message is useful
if the remote host has not responded to
your input and you wish to see whether
it is inactive or just busy.

brk

ec

el

This command sends a message to the
remote machine that has the same
significance as pressing the <Break>
key on your terminal would for your
local machine. Since brk is imple
mented between a terminal and a local
machine as a set of physical signals,
rather than data, pressing the <Break>
key on your terminal affects only the
local machine; the message is not sent
to the machine to which you are con
nected via telnet. You must use the
brk command if you want to send a
break indication to a remote machine.

This command sends the telnet erase
character message to the remote ma
chine. The ec command has the same
meaning as the shell erase (<BKSP»
command has on your local machine.
Since different operating systems
implement the erase-character opera
tion differently, you may have to use
the ec command, rather than the shell
erase character, when interacting with
a remote machine. The shell erase
character can be used when you are in
command mode because command
mode's operation is local to your ma
chine.

This command sends the tel net erase
line message to the remote machine.
The el command has the same meaning
as the shell kill (erase line) command

TCP/IP User's Guide

ip

synch

escape

nop

Using Remote Terminals

Communicating Using telnet

has on your local machine. Since
different operating systems implement
the erase-line operation differently, you
may have to use the ec command,
rather than the shell kill command,
when interacting with a remote ma
chine. The shell kill command can be
used in command mode, because com
mand mode's operation is local to your
machine.

This command sends the telnet inter
rupt process message to the remote ma
chine. The ip command has the same
meaning as the shell interrupt charac
ter does on your local machine. Since
different operating systems implement
the interrupt operation differently, you
must use the ip command, rather than
the shell interrupt command, when
interacting with a remote machine.
The shell interrupt command can be
used in command mode, because com
mand mode's operation is local to your
machine.

This command sends a message to the
remote machine telling it to ignore any
input you have sent that has not yet
been processed on the remote machine.
This command is useful if you have
typed ahead a number of commands
and wish to cancel those commands
without terminating the telnet connec
tion to the remote machine.

This command sends the current telnet
escape character.

This command sends the telnet no
operation sequence.

4-7

Communicating Using telnet

toggle This command toggles various flags that control telnet
processing. The flags are toggled between TRUE and
FALSE. The subcommands and options of the toggle
command are fully described in the man page
telnet(TC):

toggle [localchars I autoflush I .••]

set This command allows you change telnet variable
values. There are subcommands and options of the set
command, and their syntax is described in the man page
telnet(TC):

status

?

set [echo I escape I interrupt I ...]

This command shows you the status of the connection to
the remote host, as well as the current options and
escape character.

This command displays information on your terminal
about operating telnet. If you specify a telnet command
name after the help command (?), then information
about that command is displayed. If you just enter the
help command, a list of all tel net commands is dis
played.

Some Sample Sessions

Two sample sessions are shown below . They illustrate how telnet can be
used in a variety of ways. Communications with a host named "there"
are shown.

Description of Session 1

This is a simple session illustrating basic telnet use. The telnet program
is invoked with a host name. A connection to that host is opened as a
result. The tel net program displays the following message while estab
lishing the connection:

"Trying ... "

This indicates that tel net is attempting to establish a connection. A
second message is displayed when the connection is-established. The tel
net program displays the current escape character. (There is no options-

4-8 TCP/IP User's Guide

Communicating Using telnet

status display.) At this point, tel net has established the connection to the
remote machine, and the remote machine displays its login prompt. The
user then logs into the machine using the same procedures that would be
used for a local terminal on that machine. The user produces a directory
listing on the remote machine. Work completed, the user then types the
escape character, and telnet enters command mode and displays the com
mand mode prompt. The user enters the quit command, and telnet closes
the connection to the remote machine and returns to the local shell.

laiter$ telnet there
Trying 192.9.200.101 ...
Connected to there.
Escape character is '~]'.

System V.3.2 UNIX (there.Lachman.COM)

login: stevea
Password:
UNIX System V/386 Release 3.2
there
Copyright (C) 1984, 1986, 1987, 1988 AT&T
Copyright (C) 1987, 1988 Microsoft Corp.
All Rights Reserved
Login last used: Man Feb 27 17:14:18 1989
there$ Is -xF
belli
hi*
hn*
jam/
rnaketd+/
ot2.c
ripsoak*
t*
there $
~]

blot/
hi+.c
hn.c
linger*
maxmin
ping+*
ripsoak.c
t.c

telnet> quit
Connection closed.
laiter$

Description of Session 2

connect.h
hi.c
indent/
linger.c
ot*
ping.c
sr.sh*
tcp/

connection.c
hin*
intel/
mailstats.c+
oLc
prafiler/
st.c
tcp.sh*

dhry/
hin.c
ip iarp.h
maketd/
ot2*
qt/
sw/
tcp0227/

This session illustrates alternative ways to log into and out of a remote
machine with tel net. The telnet program is invoked without a machine
name and enters command mode. The user does a status command, and
telnet indicates that no connection is established. The user then uses the
telnet open command to establish a connection and place telnet in input
mode. The user receives a login message from the remote system. The
user then logs into the machine, using the same procedures that would be
used for a local terminal on that machine. Work completed, the user logs

U sing Remote Terminals 4-9

Communicating Using telnet

out of the remote machine. The remote machine then closes the connec
tion. The telnet program terminates automatically and returns to the
local shell.

telnet
telnet> status
No Connection.
Escape charac:.er is ' -) ,
local echo is off
telnet> open ~~ere
Trying ...
Connected to ~here
Escape charac:.er is ' -) ,
System V.3 UNIX (there)
login: mary
TERM = (ansi)
$ Is
passwd
vol copy
whodo
$ -D

Connection clcsed by foreign host.

4-10 TCP/lP User's Guide

The rlogin Command

The rlogin Command
The riogin(TC) command connects you to a shell on a remote machine.
The rlogin program is similar to tel net but specific to UNIX-compatible
machines. The rlogin command allows you to access the same UNIX
commands on a remote machine as telnet. However, rlogin is more con
venient than teinet, because once you 'have logged onto a remote ma
chine, you have the impression of working on your local machine. You
do not have to know the special commands used in tel net. This command
can only be used with remote machines running UNIX or a compatible op
erating system. The TERM variable in the remote shell is set to the value
you are using in your local shell.

Once invoked, rlogin passes all data you input to the remote machine and
displays all output from that machine on your tenninal' s screen.

Invoking the rlogin Program

The rlogin program is invoked from the UNIX shell. You must specify
the name of a remote machine, as in this example which logs onto the ma
chine admin:

rlogin adrnin

In some cases, you-may omit specifying rlogin to the shell and simply put
the name of the remote machine, for example, admin. This is only possi
ble when your system administrator has configured UNIX to accept the
name of the remote machine without specifying rlogin. You must also
have lusrlhosts in your search path. Your system administrator can advise
you on how your machine is configured.

Leaving the rlogin Program

To leave rlogin and return control to your local shell, type the escape
character (the tilde) and a period C.).

Simply exiting your remote shell also causes rlogin to return control to
your local shell.

Using Remote Tenninals 4-11

The rlogin Command

Options for rlogin

You can specify three options when invoking rlogin. These options are:

-ec The -e option causes rlogin to use the character c
instead of tilde C) as the escape character to use when
exiting rlogin. For example:

rlogin acirnin.-e!

sets the exclamation point (!) as the rlogin escape char
acter.

-8 The -8 option tells rlogin to tum off the stripping of par
ity bits and pass 8 bit characters through to the remote
end.

Whether you use your own user name or another user name, you must
have established user equivalence for yourself on the remote machine to
which you are logging in. The system administrator of the remote ma
chine can advise you on the configuration of that machine. (U ser
equivalence is discussed in Chapter 2.)

U sing a Tilde in the Text

If your escape character is tilde C), the default escape character, then you
cannot normally send a line of input beginning with a tilde to the remote
machine. If you need to send such a line, begin that line with a second
tilde. That is, the line should begin with two tildes (j.

4-12 TCP/IP User's Guide

Chapter 5

Transferring Files

Introduction 5-1

Working with ftp 5-2
File-Transfer Modes in ftp 5-2
File-Naming Conventions in ftp 5-2
Invoking ftp 5-3
Command Options in ftp 5-3
Using the .netrc File for Automatic Login 5-5
Restrictions on ftp Commands 5-6
Description of the ftp Commands 5-6
Some Sample ftp Sessions 5-18

The rcp Command 5-21
Invoking rcp 5-21
The Options of rcp 5-22
Some Sample rcp Sessions 5-23

Introduction

Introduction
This chapter describes two command programs that you can use to
transfer files. These programs are called ftp (file transfer program) and
rep (remote copy program). Information in this chapter includes:

• when and why to use the commands

• how to invoke and exit the commands

• how to use the command options

• sample sessions

The ftp(TC) command makes it possible to transfer files between your
current node and other machines on the internet. It is an interactive pro
gram that enables you to input a variety of commands for file transmis
sion and reception. In addition, ftp enables you to examine and modify
file systems of machines on the network. When you invoke ftp, you
interact with ftp's command mode until you exit ftp and return to the cal
ling program. The ftp program is available under a wide range of operat
ing systems.

When you are communicating with machines running the UNIX operating
system, the rcp(TC) command can be used in place of ftp. The rcp com
mand is specific to UNIX-compatible operating systems.

Transferring Files 5-1

Working with ftp

Working with ftp
To use the ftp program, you need to open a connection over the internet to
a remote machine before you transfer files to or from the remote machine
with ftp. The ftp program allows you to have several connections active
simultaneously, although generally you can only issue commands that
operate on a single connection. The multiple connection facility allows
you to communicate with several remote machines within a single ftp
session. You do not have to log in and out of these machines every time
you want to change connections. The connection that ftp uses at any
given time is called the current connection.

File-Transfer Modes in ftp

The ftp program allows you to transfer files in one of two modes, Ascn or
binary. Use ASCII mode for text files that can be represented in standard
ASCII code. Binary mode is used for binary data that must be represented
as strings of contiguous bits. For communication between UNIX ma
chines, the Ascn mode can be used for most file transfers. (ASCn is the
default mode.) The binary mode may be required for transferring some
files, such as program-object modules, when communicating with non
UNIX machines, Your system administrator can advise you on when to
use which file transfer mode.

File-Naming Conventions in ftp

If the first character of a file name that you specify to ftp is a hyphen (-),
ftp uses its standard input (for reading) or the standard output (for writ
ing).

If the first character of a file name that you specify to ftp is a vertical bar
(I), the remainder of the file name is interpreted as a shell command. The
ftp program creates a shell with the file name supplied as a command, and
then uses its standard input (for reading) or the standard output (for writ
ing). If the shell command includes spaces, the file name must be appro
priately quoted. For example:

"I is -is"

The pipe symbol (I) can appear either inside or outside the quote marks.

5-2 TCP/IP User's Guide

Working with ftp

Invoking rtp

To invoke ftp from the UNIX shell, enter the command ftp. After ftp is
started, its prompt is displayed on your tennina!. The ftp prompt looks
like this:

ftp>

Optionally, you can specify the name of the remote machine with which
you intend to communicate. The following example shows how to
specify a remote machine called admin:

$ ftp adrnin

Machine names are defined by your system administrator. Before using
ftp, you can examine the machine names available to you by listing the
contents of the file / etc! hosts.

When you specify a machine name while invoking ftp, the program estab
lishes a network connection to that machine to allow you to transfer files.
This is equivalent to using ftp's open command to open a connection to
the host you name. You can also invoke ftp without a machine name, as
in this example:

$ ftp

If you do not specify a machine name from the shell, you must open a
connection from within ftp. This is done by using ftp's open command
before you transfer any files. See the section "Description of the ftp
Commands" later in this chapter for details of the open command.

Command Options in rtp

In addition to specifying a host name when invoking ftp, you can also
specify a number of options that affect how ftp operates. These options
must be placed after the command name (ftp) but before the host name if
you are specifying one. The options you can specify when invoking ftp
each consist of a hyphen (-) followed by a single letter, for example, -v.

Each of the available options has a corresponding command of the same
name that can be used within ftp. You should compare the use of the
options with the corresponding ftp command. See the section "Descrip
tion of the ftp Commands" for details of the ftp commands.

Transferring Files 5-3

Working with ftp

-v causes ftp to operate in verbose mode. In verbose mode,
the ftp protocol messages sent by the remote machine to
ftp are displayed on your terminal. Also, if you use ver
bose mode, statistics are displayed after the completion
of each file transfer. Verbose mode is on by default if ftp
is run interactively. If ftp is run in a script, verbose
mode is off, and the -v option turns verbose mode on.
You can also change whether verbose-mode information
is displayed from within ftp with ftp's verbose com
mand.

-d causes ftp to operate in debug mode. In debug mode,
the ftp protocol messages sent by ftp to the remote ma
chine are displayed on your terminal. If you do not use
the -d option, this information is not displayed. You can
also change whether debug mode information is dis
played from within ftp with ftp's debug command.

-i means that there is no interactive prompt.

-0 prevents ftp from using autologin mode when connect
ing to a remote machine. When auto login mode is used,
ftp will try to identify you automatically to the remote
machine and log you into that machine. (See the section
"Using the .netrc File for Automatic Login" later in this
chapter for more information.) If you use the -0 option
to tum off autologin, you will have to use ftp's user
command to log into the remote machine manually.

-g causes ftp to disable expansion of UNIX filename wild
cards such as *. If you do not use the -g option, ftp will
expand your filenames containing wild cards into lists of
files. You can also change whether wild card expansion
is used from within ftp with ftp's glob command.

Here are examples that show the use of some ftp options:

$ ftp -v -d admin

The above command invokes ftp with verbose and debug modes on and
causes ftp to open a connection to the remote machine named admin. In
debug mode, the commands sent to the remote machine are displayed.
Verbose mode displays the responses received and the statistics in bytes
received.

5-4 TCP/IP User's Guide

Working with rtp

$ ftp -v -d

The above command invokes rtp with verbose and debug modes on but
does not cause any connection to be opened.

$ ftp -n -g admin

The above command invokes rtp with auto login and wild card expansion
mode off and causes rtp to open a connection to the remote machine
named admin.

$ ftp -n -g

The above command invokes rtp with auto login and wild card expansion
mode offbut does not cause any connection to be opened.

Using the .netrc File for Automatic Login

You can create a file named .netrc in your home directory as an optional
convenience feature. This file contains a line entry of the login data for
each machine that you need ftp to open automatically. See netrc(F) for
detailed infonnation on this file.

When you invoke rtp specifying a machine, or when you subsequently
open a machine, rtp reads the .netrc file. If you have an entry for that
particular machine, rtp automatically conducts the login protocol
exchange with its counterpart at the remote machine. It supplies your
login name and password if you have entered your password in the file. If
you open a machine in verbose mode, you can see the transactions taking
place.

The fonnat of the file consists of blank-separated fields introduced by
keywords:

machine name login name password password

where machine, login, and password are keywords followed by the
literal data needed for login:

machine

login

password

Transferring Files

The name of the node.

The user login name for that node.

The user's password on that node. (The password
is given in nonnal, unencrypted text.) If you
include your password in the .netrc file, you must
read/write protect the file, by setting permissions,

5-5

Working with ftp

to prevent discovery of your password; otherwise,
rtp will not let you use the file. File pennissions
must be set to 400 or 600 for a .netrc file which
includes passwords. See chmod(C) for more in
formation on file pennissions. (There is still some
risk here in putting your password in the file. You
must weigh the security considerations.) Ask your
system administrator before using this feature.

If you do not enter your password in the file, ftp prompts you for your
password. For example:

machine admin login guido password open

where admin is the node, guido is the user who logs into admin, and open
is guido's password.

Restrictions on ftp Commands

In addition to ftp commands that use standard ftp protocol functions,
SCQ TCPIIP provides a number of commands that use optional ftp proto
col functions. Such commands should be used only to communicate with
machines that are running UNIX or a compatible operating system. The
commands whose use should be restricted in this way are indicated in the
command descriptions described later in this chapter. When communi
cating with a remote machine that does not run UNIX, you should ask
your system administrator whether it supports these ftp commands before
using them. Some ftp servers do not support all the optional commands.

Many ftp servers can provide a list of supported commands. When com
municating with a remote machine that has such a server, ftp's
remoteheip command can be used to obtain this infonnation.

Description of the ftp Commands

When ftp displays its prompt, you can enter one of the commands
described in this section. When the command is complete,. the ftp prompt
is displayed again. Depending on whether you turn on verbose or debug
mode, other messages may also appear on your tenninal.

Each command you give to ftp must be followed by <RetUrn>. The ftp
program does not start a command until it receives a <Return> from you.
If you make a mistake while typing a command, you can use the shell
line-editing' commands erase «BKSP» and kill «Cancel» to edit the
characters that you have typed.

5-6 TCPIIP User's Guide

Working with ftp

You do not have to enter the full command name, only enough characters
to distinguish the command from other ftp commands. In most cases, this
is the first one or two characters of the command.

This section lists most, but not all, of the commands available for ftp.
See the manual page ftp(TC) for a complete list of commands.

append

ascii

bell

Transferring Files

The ! command suspends ftp and invokes a shell
on the local ma<;hine. Any character(s) you type
after entering the exclamation point are then exe
cuted locally as a shell command. You can return
to ftp by exiting the shell. All ftp options and
remote machine connections are returned in the
same state as before you gave this command. If a
shell command is typed on the same line as the !
character, only that single command is executed.
The ftp program then returns to command mode
when the given command is complete.

The append command causes ftp to add the con
tents of a local file to the end of a file on the
remote machine to which you are currently con
nected. You can specify the files to be used when
invoking the command, for example:

ftp> append localfile remote file

Alternatively, you can just use the command name
and have ftp prompt you for the file names, for
example:

ftp> append
(local-file) localfile
(remote-file) remote file

When you use the append command, the remote
machine you are connected to must be a machine
running UNIX or a compatible operating system.

The ascii command causes ftp to transfer files in
ASCII mode. (The default mode is ASCII.)

The bell command causes ftp to sound the bell at
your terminal after each file transfer is completed.
The next time you enter the bell command, ftp
will stop sounding the bell after file transfers.

5-7

Working with ftp

binary

bye

cd

close

debug

delete

dir

5-8

The binary command causes ftp to transfer files
in binary mode. (The default mode is ASCII.)

The bye command tenninates your ftp session and
exits ftp. The bye command closes all your open
connections.

The cd command changes your directory on the
remote machine. to a new directory name. You
can specify the new directory name when invok
ing the command, as in the following example:

ftp > cd /usr/bin

Alternatively, you can just use the command
name, in which case ftp prompts you for the new
directory, as in the following example:

ftp> cd
(remote-directory) /usr/bin

The close command closes the current connection.

The debug command turns debug mode on and
off. If debug mode is on, messages sent by ftp to
the remote machine are displayed on your tenni
nal. If debug mode is off, this information is not
displayed.

The delete command deletes a file on the remote
machine to which you are currently connected.
You can specify the name of the file to be deleted
when invoking the command, for example:

ftp> delete remote file

If you prefer, you can just use the command name.
The ftp program· then prompts you for the file
name, as in the following example:

ftp> delete
(remote-file) remote file

The dir command displays a detailed listing of the
contents of a directory on the remote machine to
which you are currently connected. (Compare Is,

TCP/IP User's Guide

form

get

Transferring Files

Working with ftp

below.) You can specify the name of the directory
to be listed when invoking the command, as
shown here:

ftp> dir /usr/bin

If you do not specify a directory name, the current
working directory on the remote machine is listed.

You can also specify that the results of this com
mand are placed in a file rather than displayed on
your terminal. Do this by giving ftp a file name
on your local machine in which to store the direc
tory listing, for example:

ftp> dir /usr/bin printfile

You must specify a directory name before the out
put file name (here, print/tie). Thus, if you want to
list the current directory in a file called printfile,
use:

ftp> dir . print file

where "." stands for the current directory.

The form command displays the file format used.
Currently, only the nonprint format is supported.

The get command copies a file from the remote
machine to which you are currently connected.
The file is copied to your local machine. (Use the
mget command to copy several files at one time.)
When you invoke the command, you can specify
the name of a file on the remote machine and a file
name on your machine where the file is to be
stored, as in this example:

ftp> get remote file localfile

If you simply specify the name of a file to be
copied from the remote machine, then the file cre
ated on your local machine is given the same
name as the file on the remote machine. Here is
an example that does this:

ftp> get remote file

5-9

Working with rtp

glob

hash

help

led

Is

5-10

If you prefer, you can just use the command name.
The rtp program prompts you for the filenames to
use. Here is an example:

ftp> get
(remot e - f i 1 e) remote file
(local-file) localfile

If you omit the local filename, the get command
will create a file' on your machine with the same
name as the file on the remote machine.

The glob command causes rtp to disable expan
sion of UNIX file-name wild cards such as '*'.
This command toggles off and then on; that is, the
next time you enter the glob command, wild card
expansion will be re-enabled. When wild card
expansion is enabled, rtp will expand your file
names which contain wild cards into lists of files.

The hash command causes rtp to display a pound
sign (#) after each block of data it sends to or
receives from the remote host. The size of a data
block may vary with the software release; use ver
bose mode with the hash command to see the
current value. The hash command toggles on and
then off; that is, the next time you enter the hash
command, rtp will stop displaying pound signs
after each data block.

The help command displays information on your
terminal about operating rtp. If you specify a
command name after help, information about that
command is displayed. If you just enter help, a
list of all the rtp commands is displayed.

The led command changes the working directory
used by rtp on your local machine. You can
specify a directory name to be used as the working
directory, for example:

ftp> led /usr/deb

If you do not specify a directory name, your home
directory will be used.

The Is command displays an abbreviated listing of
the contents of a directory on the remote machine

TCP/IP User's Guide

mdelete

mdir

Transferring Files

Working with ftp

to which you are currently connected. You can
specify the name of the directory to be listed, for
example:

ftp> Is /usr/bin

If you do not specify a directory name, the current
working directory on the remote machine is listed.

You can also specify that the results of this com
mand are placed in a file rather than displayed on
your terminal by giving ftp a file name on your
local machine in which to store the directory list
ing, as in this example:

ftp> Is /usr/bin print file

You must specify a directory name before the out
put file (here, printfile). For example, if you want
to list the current directory in a file called
printfile, the command is:

ftp> Is . printfile

where"." stands for the current directory.

The mdelete command deletes a list of files on the
remote machine to which you are currently con
nected. You can specify the names of the files to
be deleted when invoking the command, for
example:

ftp> mdelete remotefilel remotefile2 ...

Alternatively, you can simply use the command
name. The ftp program prompts you for the
filename(s), for example:

ftp> mdelete
(remote-files) remotefilel remotefile2 ...

The mdir command obtains a directory listing for
a list of remote files and places the result in a
local file. You can specify the list of remote files
and the local file when invoking the command, for
example:

ftp> mdir remotefilel remotefile2 print/de

5-11

Working with ftp

mget

mkdir

mls

5-12

(Notice that the last filename in the list is assumed
to be the printfile.) It is also possible to use just
the command name. The ftp program then
prompts you for the filename, as in the following
example:

ftp> mdir
(remote-files) remotefilel remotefile2 print/de
local-file print/de? y

The mget command copies one or more files from
the remote machine to which you are currently
connected and stores them on your local machine.
The files stored on your local machine will have
the same names as the files on the remote ma
chine.

You can specify the list of remote files when
invoking the command, for example:

ftp> mget remotefilel remotefile2 ...

If you prefer you can just use the command name.
The ftp program prompts you for the filenames as
shown here:

ftp> mget
(remote-files) rem,otefilel remotefile2 ...

The mkdir command creates a directory on the
remote machine to which you are currently con
nected. You can specify the name of the directory
to be created when invoking the command, for
example:

ftp> mkdir lulmydir

Alternatively, you can just use the command. The
ftp program then prompts you for the directory
name, for example:

ftp> mkdir
(directory-name) lulmydir

Not all ftp servers support the mkdir command.

The mls command obtains an abbreviated direc
tory listing for a group of remote files or direc
tories and places the result in a local file. You can

TCP/lP User's Guide

mput

nmap

ntrans

Transferring Files

Working with ftp

specify the list of remote files or directories and
the local file when invoking the command, for
example:

ftp> mls remotefilel remotefile2 printfile

or you can just use the command name and have
ftp prompt you for the filenames, for example:

ftp> mls
(remote-files) remotefilel remotefile2 printfile
local-file printftle? y

The mput command copies one or more files from
your local machine to the remote machine where
you are currently connected. The files stored on
the remote machine will have the same names as
the files on your local machine.

You can specify the list of files when invoking the
command, for example:

ftp> mput loealfilel loealfile2 ...

You may prefer just to use the command name and
have ftp prompt you for the file names as in the
following example:

ftp> mput
(local-files) loealfilelloealfile2 ...

Use this command to set or unset the filename
mapping mechanism. This command is useful
when connecting to a remote computer which is
not UNIX compatible and has different file naming
conventions. It affects the mapping of local
filenames with the get and mget commands and
the mapping of remote filenames with the put and
mput commands. The nmap command is com
plex; see the ftp(TC) manual pages for more
detailed infonnation.

Use this command to set or unset the filename
character translation mechanism. This command
is useful when connecting to a non-UNIX remote
computer with different file naming conventions.
It affects the translation of characters in local
filenames with the get and mget commands and in

5-13

Working with ftp

open

prompt

put

5-14

remote filenames with the put and mput com
mands. The ntrans command is complex; see the
ftp(TC) manual pages for more detailed informa
tion.

The open command establishes a connection to a
remote machine that can then be used for file
transfer commands. You can specify the name of
the remote machine when invoking the command,
for example:

ftp > open admin

The command name can be used on its own. The
ftp program then prompts you for the machine
name, as in this example:

ftp> open
(to) admin

If you specify a host name when invoking the
command, you can also optionally specify a port
number on the remote machine. If a port number
is specified, ftp will attempt to open a connection
to the remote machine at that port rather than the
default port for ftp. You should only use this
option if you are asked to do so by your system
administrator. If you do not specify a port num
ber, ftp will not prompt you for one.

The prompt command prevents ftp from asking
you for permission to proceed between files in
multiple file commands such as mget. This com
mand toggles off and then on; that is, the next time
you enter the prompt command, ftp will start ask
ing you for permission to proceed between files.

The put command transfers a file from your local
machine to the remote machine where you are
currently connected. (Use the mput command to
transfer several files at one time.) You can specify
the name of a file on your local machine and a file
name on the remote machine when you invoke the
command, for example:

ftp> put loealfile remotefile

or:

ftp> put loealfile

TCP/IP User's Guide

pwd

quit

quote

recv

remoteheIp

rename

Transferring Files

Working with ftp

Alternatively, you can just use the command name
and have ftp prompt you for the filename(s) to
use, for example:

ftp> put
(local- file) localfile
(remote-file) remotefile

If you omit the remote filename, the put command
will create a file on the remote machine with the
same name as the file on the local machine.

The pwd command causes ftp to print the name of
the current working directory on the remote ma
chine to which you are currently connected.

(This is the same as the bye command above.)

The quote command causes the arguments you
enter to be sent to the remote machine for execu
tion. Arguments must be ftp commands and argu
ments. The rtp commands that a remote host sup
ports can be displayed with the remoteheip com
mand. You can enter the conunand string to be
sent when invoking the command, for example:

ftp> quote NLST

or you can just use the command name and have
ftp prompt you for the command line to use, for
example:

ftp> quote
(command line to send) NLST

You should not use this command unless asked to
do so by your system administrator.

(This is the same as the get command above.)

The remoteheip command requests help from ftp
at the remote machine to which you are currently
connected. The information returned by the
remote machine indicates which ftp commands it
supports.

The rename command renames a file on the
remote machine to which you are currently

5-15

Working with ftp

rmdir

send

sendport

status

5-16

connected. You can enter the filenames to be -used
when invoking the command, for example:

ftp> rename remotefilel remotefile2

Alternatively, you can just use the command name
and have ftp prompt you for the file names to use,
for example:

ftp> rename
(from-name) remoteflIeJ
(to-name) remotefile2

The rmdir command removes a directory on the
remote machine to which you are currently con
nected. You can specify the name of the directory
to be removed when invoking the command, for
example:

ftp> rmdir lulmydir

or you can just use the command name and have
ftp prompt you for the directory name, for exam
pIe:

ftp> rmdir
(directory-name) /ulmydir

Not all ftp servers support the rmdir command.

(The same as the put command above)

The send port command causes ftp to disable the
ability to specify a local port to the remote ma
chine for a data connection. This command tog
gles off and then on; that is, the next time you
enter the send port command, specification of
local ports will be re-enabled. The default mode
for local port specification when ftp is invoked is
on. You should not use this command unless
asked to do so by your system administrator.

The status command causes ftp to display its
current status on your terminal. This status
includes the modes selected with the bell, form,
bash, glob, port, prompt, and type commands.

TCP/IP User's Guide

type

trace

user

Transferring Files

Working with ftp

The type command sets the file transfer type to
one that you specify. Valid values are ASCII and
binary. The type command is another way of
invoking the ascii and binary commands. If you
do not specify a type when invoking this com
mand, ascii is used.

The trace command causes ftp to enable packet
tracing. This command toggles on and then off;
that is, the next time you enter the trace com
mand, packet tracing will be disabled. You should
not use this command unless asked to do so by
your system administrator.

The user command allows you to identify your
self to the remote host when establishing a con
nection. If autologin was not disabled with the -n
option when ftp was invoked, this command is not
required. (See the section "Using the .netrc File
for Automatic Login" earlier in this chapter.) If
autologin is disabled or an auto login is not config
ured for you on the remote machine, you will have
to use the user command to identify yourself to
the remote machine.

Three pieces of infonnation are used to tell the
remote machine who you are: a login name, a
password, and an account name.

Whereas a user name is required for all machines,
password and account names are required only by
some systems. Your system administrator can tell
you the requirements of your machines. You
should also consult your system administrator to
find out valid user and account names and pass
words for a machine that you intend to use.

You can enter the infonnation for the user com
mand when invoking it, as in this example:

ftp> user mike cat myaccount

Also, you can just use the command name and
have rtp prompt you for the infonnation to use, for
example:·

5-17

Working with ftp

verbose

?

ftp> user
(username) mike
password:
Account: myaccount

Note that ftp will not echo your password when
you type it, in order to protect the security of this
infonnation. If a password or account is not
required on the remote machine with which you
are connecting, -the password or account prompts
will not be displayed.

The verbose command causes ftp to disable ver
bose mode. This command toggles off and then on;
that is, the next time you enter the verbose com
mand, verbose mode will be enabled. In verbose
mode, the ftp protocol messages sent by the
remote machine to ftp are displayed on your ter
minal. Also, if you use verbose mode, statistics
are displayed after the completion of each file
transfer. If you do not use verbose mode, this in
fonnation is not displayed.

(Anotller name for the help command.)

Some Sample ftp Sessions

This section illustrates how ftp can be used. Three examples are shown.
Two hosts are used in these sessions, the local host HERE and the remote
host THERE.

Description of Session 1

This is a simple session illustrating ftp use for sending and receiving files.
The ftp command is invoked with a host name and automatically logs the
user into that host, because the -n (disable auto login) option was not used.

Verbose mode is disabled with the verbose command. The user then
changes working directory on the remote machine to the fetc directory.
Since the -d (debug) option was not used and verbose mode was disabled,
no messages other than the ftp prompt are displayed by ftp.

The user does a directory listing. of the f etc directory on THERE using the
Is command for an abbreviated listing. The ftp command shows three
files in fetc on THERE. The command get passwd is then issued to copy
the file passwd from THERE to HERE. A file named passwd is created on
HERE since no local filename was specified.

5-18 TCP/IP User's Guide

Working with ftp

The put command is then used to copy a file called wall from the current
working directory on the local machine to the remote working directory
(Jete) on the remote machine (THERE). Once again, the same filename is
used since no remote filename was specified. After the transfer is com
plete, a directory listing is requested that now shows four files in Jete on
THERE including the file wall, which was just sent from HERE.

The bye command is then used to exit ftp and return to the local shell.

$ ftp THERE
Connected to THERE
220 THERE FTP server (Version 4.160 #1) ready.
Name (THERE: stevea) :
Password (THERE:stevea):
331 Password required for stevea.
230 User stevea logged in.
ftp> verbose
Verbose mode off.
ftp> ed jete
ftp> Is
passwd
voleopy
whodo
ftp> get passwd
ftp> put wall
ftp> Is
passwd
voleopy
wall
whodo
ftp> bye
$

Description of Session 2

This session illustrates the displays caused by using a number of ftp
options. After invoking ftp with the remote host name, the user issues a
command to tum on debug mode. The ftp command displays messages
indicating that this option is now enabled.

The user then changes the remote working directory to fete. Since debug
and verbose modes are on, ftp displays messages showing the command
sent to the remote machine (---> CWD fete) and the response received
from the remote machine (250 CWD command successfuL). Note that the
cd command, which has the same fonn as UNIX's change-directory com
mand, is sent as a CWD command (for change workiRg directory) to the
remote machine. The CWD command is ftp's way of saying cd indepen
dently of any specific operating-system command language.

Transferring Files 5-19

Working with ftp

Following the cd command, the user does a pwd command to verify the
working directory. Once again, The ftp command displays the messages
sent between the local and remote machines and then displays the current
remote working directory. The user then turns on the hash option. ftp
displays a message indicating that this option is now enabled.

The command get wall myfile tells ftp to retrieve the file wall and place it
in the file myftle in the user's local working directory. The ftp command
displays the messages sent between the two hosts to begin the transfer
and then prints a hash mark for each block of information received. After
the transfer is complete, statistics are displayed showing the total time
required and the data rate for the transfer.

After the file is received, the user closes the connection with the close
command and exits ftp with the bye command.

$ ftp THERE
Connected to THERE
220 THERE FTP server (Version 4.160 #1) ready.
Name (THERE: stevea) :
Password (THERE: stevea) :
331 Password required for stevea.
ftp> debug
Debugging on (debug = 1)

ftp> cd /etc
-> CWO /etc
200 CWO command okay.
ftp> pwd.
--> PWD
251
ftp> hash
Hash mark printing on (1024 bytes/hash mark) .
ftp> get wall myfile
---> PORT 3,20,0,2,4,51
200 PORT command okay.
-> RETR wall
150 Opening data connection for wall (3.20.0.2,1075) (24384 bytes).
######t##########t#####
226 Transfer complete.
24550 bytes received in 12.00 seconds (2 Kbytes/s)
ftp> close
--> QUIT
221 Goodbye.
ftp> bye
$

5-20 TCP/IP User's Guide

The rep Command

The rep Command
Another command that enables you to copy files between any two UNIX
machines on the internet is rep (remote copy). The rep command is simi
lar to ftp but has a syntax much like the UNIX cp command. This com
mand can only be used with remote machines running UNIX or a compati
bIe operating system.

Invoking rep

The rep program is invoked from the UNIX shell. You must specify the
names of files to copy and the location to which they are to be copied.
Note that rep is similar to the ep command. You can use it to copy from
a local file to a remote file or vice versa. The following example shows a
file called remoteftle on the machine admin being copied to localfile on
the local machine.

As shown, filenames for rep fonow a convention Li.at is an extension of
the UNIX filename convention. Filenames can take one of bee forms,
where a filename names a file or a directory. Valid forms foc filenames
are:

• user@machine:filename

• machine:filename

• filename

where:

machine

user

Transferring Files

is the name of the machine which contains or will
contain the file. If you do not specify a machine,
the file is assumed to reside on your local ma
chine.

is the user name on the machine you specify. If
you do not specify a user name, your user name 00

your local machine is used. Whether you use your
user name or another user mime, you must have
established permission for yourself on the ma
chine where the file is located. The system
administrator of the remote machine can advise
you on how the remote machine is configured.

5-21

The rep Command

filename is a standard UNIX filename which can include a
directory path. If the filename you specify does
not begin with a slash (/), the filename is assumed
to be relative to the specified user's home direc
tory. The filename can include wild cards but
these filenames may have to be quoted to prevent
their expansion by the shell on your local ma
chine.

If you specify only a directory name for the destination of an rep com
mand, the file(s) you specify are copied into that directory with the same
names as the files.

The Options of rep

You can specify the following options when invoking rep:

-r

-p

5-22

This option allows the copying of directory trees.
If the file specified. for copying is a directory and
you specify -r, the entire directory tree under that
directory is copied. When -r is specified, the des
tination of the rep command must be a directory.
When you do not specify the -r option, requesting
the copying of a directory is an error.

This option allows the preserving of modification
times and modes of the source files in its copies,
ignoring the umask. When you select -p, the
modification times are duplicated. When you do
not select -p, the umask is observed.

TCPjlP User's Guide

The rep Command

Some Sample rep Sessions

In the following examples, two remote machines on the network named
THERE-C and THERE-Cl are used.

The first example copies a file named list from the user's current directory
to the user's home directory on THERE-C:

$ rep list THERE-C:list

The second example copies the directory hierarchy Inetlsrc on the local
machine to a directory tree rooted in the directory src within the user's
home directory on THERE-C.

$ rep -r /net/sre THERE-C:sre

The third example shows the user copying the file list from the home
directory of a user named mike on THERE-C to the lusrltmp directory on
THERE-Cl. The copy on THERE-Cl is to belong to a user named deb.

$ rep mike@THERE-C: list deb@THERE-Cl: !usr!tmp

Transferring Files 5-23

Chapter 6

The Time Synchronization
Protocol

Introduction 6-1

Message Fonnat 6-3

The TSP Messages 6-4
Adjtime Message 6-4
Acknowledgment Message 6-5
Master-Request Message 6-5
Master Acknowledgement 6-6
Set Network Time Message 6-6
Master-Active Message 6-7
Slave-Active Message 6-7
Master-Candidature Message 6-8
Candidature Acceptance Message 6-8
Candidature Rejection Message 6-9
Multiple Master Notification Message 6-9
Conflict-Resolution Message 6-10
Quit Message 6-10
Set-Date Message 6-11
Set-Date-Request Message 6-11
Set Date Acknowledgment Message 6-12
Start-Tracing Message 6-12
Stop-Tracing Message 6-13
Master-Site Message 6-13
Remote Master Site Message 6-14
Test Message 6-14
Loop Detection Message 6-15

Introduction

Introduction
The Time Synchronization Protocol (TSP) was designed for specific use
by the program timed(ADMN). This program is a local area network
clock synchronizer for the UNIX operating system with enhanced net
working capabilities provided by SCa. TCP/IP. The timed program is
built on the DARPA UDP protocol and based on a master-slave scheme.

TSP serves two purposes. First, it supports me$sages for the synchroniza
tion of the clocks of the various hosts in a local area network. Second, it
supports messages for the election for a new master that occurs among
slave time daemons when, for any reason, the master disappears.

Briefly, the synchronization software, which works in a local acea net
work, consists of a collection of time daemons (one per machine) and is
based on a master-slave structure. The present implementation keeps pro
cessor clocks synchronized within 20 milliseconds if supported by the
hardware. Otherwise, 1 second is the best that can be done. A ma~ter
time daemon measures the time difference between the clock of the ma
chine on which it is running and those of all other machines. The current
implementation uses ICMP Time Stamp Requests to measure the clock
difference between machines. The master compntes the network time as
the average of the times provided by nonfaulty clocks. A clock is con
sidered to be faulty when its value is more than a small specified interval
apart from the majority of the clocks of the machines on the same net
work. It then sends to each slave time daemon the correction that should
be performed on the clock of its machine. This process is repeated peri
odically. Since the correction is expressed as a time difference rather
than an absolute time, transmission delays do not interfere with synchro
nization. When a machine comes up and joins the network, it starts a
slave time daemon. This asks the master for the correct time and resets
the machine's clock before any user activity can begin. The time dae
mons therefore maintain a single network time in spite of the drift of
clocks away from each other.

Additionally, a time daemon on gateway machines may run as a submas
ter. A submaster time daemon functions as a slave on one network that
already has a master and as master on other networks. In addition, a sub
master is responsible for propagating broadcast packets from one network
to the other.

To ensure that the service provided is continuous and reliable, it is neces
sary to implement an election algorithm that will elect a new master.
This election occurs if the machine running the current master crashes,
the master terminates (for example, because of a run-time error), or the

The Time Synchronization Protocol 6-1

Introduction

network is partitioned. Under this algorithm, slaves are able to realize
when the master has stopped func\.: oning; the slaves then elect a new
master from among themselves. It is important to note that since the
failure of the master results only in a gradual divergence of clock values,
the election need not occur immediately.

All the communication occurring among time daemons uses the TSP pro
tocol. While some messages need not be sent in a reliable way, most
communication in TSP requires reliability not provided by the underlying
protocol. Reliability is achieved by' the use of acknowledgements,
sequence numbers, and retransmission when message losses occur. When
a message that requires acknowledgment is not acknowledged after multi
ple attempts, the time daemon that has sent the message will assume that
the addressee is down. This chapter does not describe the details of how
reliability is implemented, but only points out when a message type
requires a reliable transport mechanism.

The message format in TSP is the same for all message types; however, in
some instances, one or more fields are not used. The next section
describes the message format. The following sections describe in detail
the different message types, their use, and the contents of each field.

The message format is likely to change in future versions of timed.

6-2 TCP/IP User's Guide

Message Format

Message Format
All fields are based upon 8-bit bytes. Fields should be sent in network
byte order if they are more than one byte long. The structure of a TSP
message is the following:

1. A one-byte message type.

2. A one-byte version number, specifying the protocol version
which the message uses.

3. A two-byte sequence number to be used for recognizing
duplicate messages that occur when messages are retransmit
ted.

4. Eight bytes of packet-specific data. This field contairu; two
four-byte time values and a one-byte hop count, or it may be
unused, depending on the type of the packet.

5. A zero-tenninated string of up to 256 ASCII characters with
the name of the machine sending the message.

The Time Synchronization Protocol 6-3

The TSP Messages

The TSP Messages
The following charts describe the message types, show their fields, and
explain their usages. For the purpose of the following discussion, a time
daemon can be considered to be in one of three states: slave, master, or
candidate for election to master. Also, the term broadcast refers to the
sending of a message to all active time daemons.

Adjtime Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

Seconds of Adjustment
Microseconds of Adjustment

Machine Name
...

Type: TSP _ADJTIME (1)

The master sends this message to a slave to communicate the difference
between the clock of the slave and the network time which the master has
just computed. The slave will adjust the time of its machine accordingly.
This message requires an acknowledgment.

6-4 TCP/IP User's Guide

The TSP Messages

Acknowledgment Message

Byte 1 I Byte 2 I Byte 3 1 BXte4
Type I Version No. l Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _ACK (2)

Both the master and the slaves use this message for acknowledgment
only. It is used in several different contexts; for example, it is used in
reply to an Adjtime message.

Master-Request Message

Byte 1 I Byte 2 I Byte 3 1 Byte 4
Type I Version No. J Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MASTERREQ (3)

A newly-started time daemon broadcasts this message to locate a master.
No other action is implied by this packet. It requires a Master Ac
knowledgment.

The Time Synchronization Protocol 6-5

The TSP Messages

Master Acknowledgement

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MASTERACK (4)

The master sends this message to acknowledge the Master Request mes
sage and the Conflict Resolution Message.

Set Network Time Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

Type: TSP _SETTIME (5)

The master sends this message to slave time daemons to set their time.
This packet is sent to newly-started time daemons and when the network
date is changed. It contains the master's time as an approximation of the
network time. It requires an acknowledgment. The next synchronization
round will eliminate the small time difference caused by the random
delay in the communication channel.

6-6 TCP/IP User's Guide

The TSP Messages

Master-Active Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP_MASTERUP(6)

The master broadcasts this message to solicit the names of the active
slaves. Slaves will reply with Slave Active messages.

Slave-Active Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _SLA VEUP (7)

A slave sends this message to the master in answer to a Master Active
message. This message is also sent when a new slave starts up, to inform
the master that it wants to be synchronized.

The Time Synchronization Protocol 6-7

The TSP Messages

Master-Candidature Message

Byte 1 ! Byte 2 ! Byte 3 1 Bxte4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _ELECTION (8)

A slave eligible to become a master broadcasts this message when its
election timer expires. The message declares that the slave wishes to
become the new master.

Candidature Acceptance Message

Bytel I Byte 2 I BXte3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _ACCEPT (9)

A slave sends this message to accept the candidature of the time daemon
that has broadcast an Election message. The candidate will add the
slave's name to the list of machines that it will control, should it become
the master.

6-8 TCP/lP User's Guide

The TSP Messages

Candidature Rejection Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type 1 Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _REFUSE (10)

After a slave accepts the candidature of a time daemon, it will reply to
any election messages from other slaves with this message. This rejects
any candidature other than the first received.

Multiple Master Notification Message

Byte 1 I Byte 2 I B~te3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _CONFLICT (11)

When two or more masters reply to a Master Request message, the slave
uses this message to inform one of them that more than one master exists.

The Time Synchronization Protocol 6-9

The TSP Messages

Conflict-Resolution Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _RESOLVE (12)

A master that has been infonned of the existence of other masters broad
casts this message to detennine who the other masters are.

Quit Message

Byte 1 I Byte 2 I Byte 3 I Bj'te 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _QUIT (13)

This message is sent by the master in three different contexts:

• to a candidate that broadcasts an Master Candidature message,

• to another master when notified of its existence, or

• to another master if a loop is detected.

In all cases, the recipient time daemon will become a slave. This mes
sage requires an acknowledgement.

6-10 TCP/IP User's Guide

The TSP Messages

Set-Date Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

Type: TSP _SETDATE (22)

The program date (1) sends this message to the local time daemon when a
super user wants to set the network date. If the local time daemon is the
master, it will set the date; if it is a slave, it will communicate the desired
date to the master.

Set-Date-Request Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

Type: TSP _SETDATEREQ (23)

A slave that has received a Set Date message will communicate the
desired date to the master, using this message.

The Time Synchronization Protocol 6-11

The TSP Messages

Set Date Acknowledgment Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _DATEACK (16)

The master sends this message to a slave in acknowledgment of a Set
Date Request Message. The same message is sent by the local time dae
mon to the program rdate(ADMN) to confinn that the network date has
been set by the master.

Start-Tracing Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _TRACEON (17)

The controlling program timedc sends this message to the local time dae
mon to start the recording in a system file of all messages received.

6-12 TCP/IP User's Guide

The TSP Messages

Stop-Tracing Message

Byte 1 1 Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _TRACEOFF (18)

Timedc sends this message to the local time daemon to stop the recording
of messages received.

Master-Site Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Timedc sends this message to the local time daemon to find out where the
master is running.

The Time Synchronization Protocol 6-13

The TSP Messages

Remote Master Site Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No..

(unused)
(unused)

Machine Name
...

Type: TSP _MSITEREQ (20)

A local time daemon broadcasts this message to find the location of the
master. It then uses the Acknowledgement message to communicate this
location to timedc.

Test Message

Byte 1 I Byte 2 J Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _TEST (21)

For testing purposes, timedc sends this message to a slave to cause its
election timer to expire.

timed is not normally compiled to support this message.

6-14 TCP/IP User's Guide

The TSP Messages

Loop Detection Message

Byte 1 Byte 2 I Byte 3 I Byte 4
Type Version No. I Sequence No.

Hop Count (unused)
(unused)

Machine Name
...

Type: TSP _LOOP (24)

This packet is initiated by all masters occasionally to attempt to detect
loops. All submasters forward this packet onto the networks over which
they are master. If a master receives a packet it sent out initially, it
knows that a loop exists and tries to correct the problem.

The Time Synchronization Protocol 6-15

Index

A

Access privileges 2-8
Active Connections Display 1-4
Addresses 1-3
Anonymous ftp 2-8
Automatic login 5-5

c

Command options, ftp program 5-3
Communicating, using telnet 4-2
Connectionless packet delivery 1-1
Connections, establishing 2-7
Copying directory trees 5-22
Copying files between machines 5-21

D

DARPA Internet 1-1
Datagram 1-2
Distributed shell programs 3-1

E

Equivalent user, defined 2-6
Establishing connections 2-7
Ethernet information, further reading 1-9
Executing remote commands 2-11, 3-0

F

File copy, remote 2-10
File naming conventions, ftp 5-2
File transfer 2-10, 5-1
File transfer modes 5-2
ftp program 2-10

anonymous 2-8
ascii mode 5-2

ftp program 2-10 (continued)
binary mode 5-2
command descriptions 5-6
command options 5-3
examples 5-4
file naming conventions 5-2
file transfer modes 5-2
invoking 5-3
optional protocol functions 5-6
restrictions on commands 5-6
sample sessions 5-18
using 5-2

G

Gateway, defined 1-3

H

Host, defined 1-1

I

ICMP, defined 1-5
Internet Control Message Protocol 1-5
Internet Protocol, defined 1-1
IP, defined 1-1

L

LAN infonnation, further reading 1-9
Login, remote 2-9

N

.netrc file
automatic login with 5-5
format of 5-5

Netstat 1-4
Network

1-1

Index

Network (continued)
addresses 1-3
gateways 1-3

Network time message, setting 6-6
Networking commands

list of 2-2
overview of TCP/IP 2-2

Networking objects, types of 2-5
Node, defined 1-1

p

Passwords 2-8
Port, defined 1-4
Printing remotely 3-2
Protocol layering 1-6

R

rcmd command 2-11
invoking 3-1
options of 3-1
remote printing and 3-2
sample session 3-2
using 3-1

rcp command 2-10
rcp program 5-21

invoking 5-21
options for 5-22
sample sessions 5-23

Remote command execution 2-11, 3-0
Remote file copy 2-10
Remote login 2-9
Remote printing 3-2
rlogin command 2-9,4-1

description 4-11
exiting 4-11
invoking 4-11
options when invoking 4-12
using tilde in text 4-12

1-2

s

Shell script programming 3-3
Socket, defined 1-4
Specifications

further reading 1-7
Standards

further reading 1-7
Synchronization 6-1

T

TCP
defined 1-2
reliable transmission and 1-2

TCP/IP
networking commands

overview of 2-2
shellscript programming and 3-3
technical references 1-7

TCP/IP, defined 1-1
telnet program 2-9, 4-1

command mode 4-2
command mode prompt 4-4
communicating with 4-2
example 4-2
input mode 4-2
invoking 4-2
sample sessions 4-8
using commands of 4-4

Tilde in text 4-12
Time Synchronization Protocol

SeeTSP
timed program 6-1
Transferring files 2-10, 5-1
TSP

acknowledgment message 6-5
adjtime message 6-4
candidature acceptance message 6-8
candidature rejection message 6-9
conflict resolution message 6-10
loop detection message 6-15
master acknowledgement 6-6
master active message 6-7
master candidature message 6-8
master request message 6-5
master site message 6-13
message format 6-3
messages 6-4
mUltiple master notification message 6-9
network time message, setting 6-6

TSP (continued)
quit message 6-10
remote master site message 6-14
set date acknowledgement message 6-12
set date message 6-11
set date request message 6-11
slave active message 6-7
start tracing message 6-12
stop tracing message 6-13
test message 6-14

u

UNIX networking commands 2-4
User equivalence, defined 2-6

v

Virtual terminal commands 4-1
Virtual terminals 2-9

Index

1-3

	0001
	0002
	001
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-00
	3-01
	3-02
	3-03
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	I-01
	I-02
	I-03

